

Approaches to learning, LMS usage and academic performance among engineering and education undergraduates

> Carlos González Associate Professor Faculty of Education Pontifical Catholic University of Chile

Outline

- Literature Review
- Objective and questions
- Context and participants
- Data sources and instruments
- Results
- Discussion
- References

Literature Review

Learning Management Systems (LMS)

Learning Analytics (LA) 👄 Learning Theories

Students' Approaches to Learning (SAL)

- Deep approach
- Surface approach
- Strategic approach

Literature Review

Study Process Questionnaire (SPQ) and Observational data obtained from LMS

- Deep approach is related to more use of the **online environment and better marks.** (Ellis et al., 2017)
- Groups of students with LMS sequences of activities labeled deep had significantly higher scores on the deep strategy and deep approach scales; and better final exam scores than those labeled as surface. (Gašević, Jovanović, Pardo, Dawson, & Dawson, 2017)
- Learning strategies, understood as traces of students' activities carried out within the LMS, are associated with deep learning approaches and not with surface approaches. (Tempelaar, Rienties, & Nguyen, 2018)

Objective

To analyze associations between approaches to learning, LMS usage patterns, and academic performance among engineering and education students.

Research Questions

- 1. What are students' **LMS usage patterns**? Are there any differences between disciplines and institutions?
- 2. How do students **approach learning**? How are these approaches associated with LMS usage and academic performance?
- 3. What variables better predict the second semester (end of the year) **academic performance**? Are there any differences between disciplines and institutions?

Context and participants

Data sources and instruments

Method

Q.1 Descriptive statisticsQ.2 Hierachical cluster analysisQ.3 Support vector regression algorithm

RESULTS

Question 1

What are students' **LMS usage patterns**? Are there any differences between institutions?

LMS tools used by the students

Time of the day students use the LMS

Question 2

How do students **approach learning**? How are these approaches related to LMS usage and academic grades?

Summary of statistics for the Surface and Deep-Strategic clusters

	Education				Engineering					
	Surface	Deep-Strategic				Surface	Deep-Strategic			
	(N=50)	(N=85)	F	p	η2	(N=112)	(N=182)	F	p	η2
	M(SD)	M(SD)				M(SD)	M(SD)			
Deep Approach	-0.69 (0.67)	0.40 (0.94)	51,501	0,000***	0,279	-0.50 (0.82)	0.31 (0.98)	54,162	0,000***	0,156
Strategic Approach	-0.72 (0.94)	0.42 (0.77)	58,4	0,000***	0,305	-0.77 (0.8)	0.47 (0.80)	168,25	0,000***	0,366
Surface Approach	0.27 (0.98)	-0.16 (0.98)	6,127	0,015*	0,044	0.40 (0.90)	-0.25 (0.98)	31,755	0,000***	0,098
2nd Semester Standardized Mark	-0.73 (1.04)	0.43 (0.68)	62,48	0,000***	0,32	-0.53 (0.74)	0.33 (1.00)	60,862	0,000***	0,172
Academic Content	-0.30 (0.87)	0.17 (1.04)	7,287	0,008**	0,052	-0.19 (0.89)	0.12 (1.05)	6,861	0,009**	0,023
Administrative Content	-0.15 (0.94)	0.09 (1.03)	1,877	0,173	0,014	-0.14 (0.92)	0.08 (1.04)	3,36	0,067.	0,011
Read Comment	0.10 (1.01)	-0.06 (0.99)	0,848	0,358	0,006	-0.29 (0.98)	0.18 (0.98)	15,806	0,000***	0,051
Write Comment	0.07 (1.13)	-0.04 (0.92)	0,377	0,54	0,003	-0.16 (1.10)	0.10 (0.92)	4,827	0,029*	0,016
Test	-0.12 (0.83)	0.07 (1.08)	1,097	0,297	0,008	-0.09 (0.97)	0.06 (1.02)	1,561	0,212	0,005
Mean	-0.29 (0.87)	0.17 (1.04)	6,83	0,009**	0,049	-0.29 (0.96)	0.18 (0.98)	15,884	0,000***	0,052
Participation Ratio	-0.11 (0.94)	0.06 (1.03)	0,91	0,341	0,007	-0.21 (1.12)	0.13 (0.89)	7,916	0,005**	0,026
Compact Index	-0.13 (0.91)	0.07 (1.05)	1,285	0,259	0,01	-0.12 (1.03)	0.07 (0.98)	2,6	0,108	0,009
Center of Mass	-0.04 (1.06)	0.02 (0.97)	0,099	0,752	0,001	-0.08 (1.20)	0.05 (0.85)	1,282	0,258	0,004
Standard Deviation	-0.21 (1.03)	0.12 (0.96)	3,558	0,061.	0,026	-0.26 (0.96)	0.16 (0.99)	12,602	0,000***	0,041
Skewness	0.07 (0.95)	-0.04 (1.03)	0,337	0,562	0,003	0.18 (1.14)	-0.11 (0.89)	5,87	0,016*	0,02

*p < 0.05; ** p < 0,01; *** p <0,001.

Question 3

What variables better predict the second semester (end of the year) **academic performance**? Are there any differences between institutions?

		Education			Engineering	
	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3
Presage						
Pre-enrollment						
UAT Math Score	0.574	0.968	1.325	-0.024	-0.031	-0.122
UAT Language Score	0.080	0.403	0.328	0.179	-0.067	0.101
UAT History/Sciences Score	0.574	0.543	0.391	0.257	0.553	0.590
High School Ranking	0.816	0.579	0.183	0.708	0.293	0.324
High School GPA	0.327	0.457	0.531	-0.263	0.008	-0.067
Socio-demographic						
Gender						
Female	0.000	0.000	0.247	-0.029	-0.038	-0.044
Male	0.000	0.000	-0.247	0.029	0.038	0.044
School Type	0.000	01000	0.2	01020	0.000	01011
Public	0.008	0.028	0.158	0.004	0.010	0.015
Private	-0.002	0.010	-0.071	-0.065	-0.084	-0.080
Subsidized	-0.006	-0.038	-0.087	0.060	0 074	0.065
University Context	0.000	0.000	0.001	0.000	0.011	0.000
Major*						
Preschool Education	0.004	-0.062	-0.020	_		_
Elementary Education	-0.004	0.062	0.020	_		_
Admission Type	0.004	0.002	0.020			
Regular		_	_	0.077	0.086	0.076
Special	-	-	-	0.077	0.000	0.070
Boundan	-	-	-	0.000	-0.007	-0.094
1st Sam Academic Performance	-	-	-	-0.077	0.001	0.010
1st Sem. Standardized Mark	2 019	1 751	1 605	2 106	1 703	1 7/13
Enrolled Credits (second semester)	1 041	0.471	0.315	0.348	0.352	0 331
Ratio of Failed Credits (first semester)	-0.265	_0 157	-0.145	-1 126	_0.002	_1 017
Process	-0.205	-0.137	-0.145	-1.120	-0.331	-1.017
		0.620	0,660		0.027	0.066
Administrative Content	-	0.020	0.000	-	0.007	0.000
Toot	-	0.204	0.301	-	0.005	0.023
Virite Commont	-	0.073	-0.274	-	0.270	0.204
Read Comment	-	-0.003	-0.127	-	0.054	0.025
Read Comment	-	-0.240	-0.552	-	0.170	0.101
Mean Standard Deviation	-	0.090	0.010	-	0.107	0.149
	-	-0.033	0.100	-	0.300	0.300
Skewness	-	-0.606	-0.709	-	-0.086	-0.014
	-	-0.115	0.021	-	-0.534	-0.416
Compact Index	-	-0.396	-0.531	-	0.115	0.181
Participation Ratio	-	-0.054	-0.130	-	0.099	0.065
Approaches to learning scales			0.577			0.475
Strategic Approach	-	-	0.577	-	-	0.175
Deep Approach	-	-	0.451	-	-	0.143
Surface Approach	-	-	-0.986	-	-	-0.105
R-squared	0.331	0.382	0.457	0.320	0.376	0.379

Stepwise support vector regression of 2nd Sem. Standardized mark as a dep. variable in function of Presage and Process variables

* Only for Education students where two majors are considered.

Discussion: Results' Summary

• Differences in uses of LMS tools

- Content and information centered
- Outside university time (night)

Comunication centeredWithin university time (day)

• Two groups emerged

Surface approach to learning

- Lower academic performance
 - Less LMS usange

Deep-

- strategic approach to • learning
- Higher academic performance
 - More LMS usange
- Variables that better predict 2nd semester academic performance

• 1st Sem. Standardized Mark

Process variables

- LMS var. increase the explanatory power by approx. 5%.
- Approaches to learning var. increase prediction power in Education but very little in Engineering.

Discussion: Contributions

0=	=
0=	=
0=	=
_	

•

Results consistent with the international literature.

Deep-strategic approach is more beneficial for learning. (Haarala-Muhonen et al., 2017)

Comparison of LMS usage patterns across institutions.

The homogenization problem was solved by conceptual definitions from e-learning literature. (Gonzalez 2012, Laurillard, 2013)

0	Ğ.

• New metrics to explore LMS usage patterns, beyond number of activities. Standard deviation, skewness, participation ratio, compact index, center of mass.

- Debate on the possibilities of using questionnaires to embed theory (SAL).
- The research provides important information to students, teachers and academic managers as a practical tool.

References

- Ellis, R. A., Han, F., & Pardo, A. (2017). Improving learning analytics Combining observational and self-report data on student learning. *Educational Technology and Society*, 20(3), 158–169.
- Gašević, D., Jovanović, J., Pardo, A., Dawson, S., & Dawson, S. (2017). Detecting Learning Strategies with Analytics: Links with Self-Reported Measures and Academic Performance. *Journal of Learning Analytics*, 4(2), 113–128. <u>https://doi.org/10.18608/jla.2017.42.10</u>
- González, C. (2012). The relationship between approaches to teaching, approaches to e-teaching and perceptions of the teaching situation in relation to e-learning among higher education teachers. *Instructional Science*, 40(6), 975– 998. <u>https://doi.org/10.1007/s11251-011-9198-x</u>
- Haarala-Muhonen, A., Ruohoniemi, M., Parpala, A., Komulainen, E., & Lindblom-Ylänne, S. (2017). How do the different study profiles of first-year students predict their study success, study progress and the completion of degrees? *Higher Education*, 74(6), 949–962.
- Laurillard, D. (2013). Teaching as a design science: Building pedagogical patterns for learning and technology. London & New York: Routledge.
- Tempelaar, D., Rienties, B., & Nguyen, Q. (2018). Investigating learning strategies in a dispositional learning analytics context: The case of worked examples. ACM International Conference Proceeding Series, (October 2019), 201–205. https://doi.org/10.1145/3170358.3170385